CrossRef: What’s new?

Rachael Lammey
Product Manager
EASE/ISMTE Joint Meeting, 2013
What was the first service CrossRef offered?

a. CrossRef Search
b. DOI Reference Linking
c. CrossMark
d. CrossCheck
e. FundRef
CrossRef was founded in 2000 by a group of scholarly publishers for the purpose of establishing a reference linking system using the DOI.
What does DOI stand for?

a. Digital Object Identifier
b. Dancing on Ice
c. US Department of the Interior
d. Malta Department of Information
e. California Department of Insurance
f. None of the above
g. All of the above
DOI is a trademark of the International DOI Foundation that appoints registration agencies like CrossRef

www.doi.org
What types of content have DOIs?

a. Consumer Movies
b. Scholarly Articles in Italian
c. Scholarly Articles in Chinese
d. Reference Works
e. Excel Spreadsheets
f. None of the Above
g. All of the Above
Current Registration agencies
- Cross-publisher reference linking
- Cross-publisher Cited-by linking
- Cross-publisher metadata feeds to CMS Affiliates
- Cross-publisher originality screening
- Cross-publisher update service
- Cross-publisher funder identification
- Cross-publisher text and data-mining
A standard way of reporting funding sources for published scholarly research
Funders
Established award systems and research management processes
Relationship with researchers funded by agencies

Publishers
Established publishing and peer-review systems
Relationship with authors submitting manuscripts
Researchers/industries who wish to text and data mine published literature have no common or simple way of accessing the full text of the content they wish to mine. This is true both of pay-walled content as well as of open access content.

Subscription-based publishers find it impractical to negotiate multiple bilateral agreements with researchers and institutions in order to authorize TDM of subscribed content.
**Publisher**

1. Deposits license and full text URLs for Content Negotiation
2. Checks researcher’s API token to ensure they have agreed to T&Cs
3. Grants full text access based on researcher’s subscription rights

**Crossref**

Assigns API Token to researcher

**Prospect**

Updates researcher’s API token to show they have agreed to T&Cs

Handles DOI Content Negotiation to get researcher to machine-readable content

**Researcher**

1. Identifies articles of interest using preferred discovery service
2. Registers with Prospect using ORCID and receives a Prospect API Token
3. Reviews and agrees to publisher license(s). If content is OA researcher goes straight to step 4.
4. Requests full text using DOIs, Prospect API token and Content Negotiation
• The Document Viewer
• File size increase (20MB to 40MB)
• Small match exclusion
• Section Exclusion
  • Ability to exclude sections from a report based on section headings
  • Focus initially on two section headings:
    • Abstract
    • Methods and Materials + variations
      • (i.e. Methods, Materials, Materials and Methods)

• Due for release this week
What else?

- Ideas:
  - Provide more high level information before investigating a Similarity Report:
    - Display the highest matching source % (already available via API)
    - Display the word count # of the highest match instance

Example Screenshot
Let us know via...

- Survey
- User group meetings
- Webinars

Help is at hand:

- ccsupport@ithenticate.com
- Via CrossRef
- Webinars
- Help documentation and videos
• A logo that identifies a publisher-maintained copy of a piece of content

• Clicking the logo tells you
  • Whether there have been any updates
  • If this instance is being maintained by the publisher
  • Where the publisher-maintained version is
  • Other important publication record information
Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens

M. J. Fogg,1 P. Alzari,1 O. Daenke,2 O. Dym,1 M. J. Nordlund,1+ R. J. Owen,1 S. Wilson,1 O. Zimhon3

1York Structural Biology Laboratory, York University, York, Ontario, Canada, 2Division of Structural and Molecular Biophysics, University of Wisconsin, Madison, Wisconsin, USA, 3EMBL-European Bioinformatics Institute, Sesto Fiorentino, Italy, 4EMBL-Centre for Structural and Functional Microscopy, CNRS/Universités de Provence and Aix-Marseille Université, 13288 Marseille, France, 5Interactions Group, Macromolecular Functionality Program, CSIRO, North Ryde, NSW, Australia, 6Department of Biophysics, Stockholm University, S-106 91 Stockholm, Sweden

Correspondence e-mail: jonathan.fogg@york.ac.uk

The Structural Proteomics Research Centre (SPARC) at York Structural Biology Laboratory is a major national hub for the determination of protein structures by NMR and X-ray crystallography. Our current focus is on high-throughput determination of protein structures for the identification of drug targets for infectious diseases. This paper provides an overview of the current state of high-throughput structural proteomics and the potential for future development.
Who?

Nearly 150,000 CrossMark deposits have been made since CrossMark went live in April 2012. These deposits include 1,161 updates and 760,773 assertions.

Participating publishers include:
- American Diabetes Association
- American Institute of Physics (AIP)
- BioScientifica
- Cambridge University Press (CUP)
- Elsevier
- F1000 Research
- International Union for Crystallography (IUCr)
- Philosophy Documentation Centre
- The Royal Society
- Vilnius Gediminas Technical University
Electrochemical studies revealed that the Fe₃O₄@r-GO/GC electrode possesses excellent electrocatalytic activities toward the low potential oxidation of NADH (0.05 V vs. Ag/AgCl) as well as the catalytic reduction of O₂ and H₂O₂ at reduced overpotentials. Via immobilization of lactate dehydrogenase (LDH) as a model dehydrogenase enzyme onto the Fe₃O₄@r-GO/GC electrode surface, the ability of modified electrode for biosensing lactate was demonstrated. In addition, using differential pulse voltammetry (DPV) to investigate the electrochemical oxidation behavior of ascorbic acid (AA), dopamine (DA) and uric acid (UA) at Fe₃O₄@r-GO/GC electrode, the high electrocatalytic activity of the modified electrode toward simultaneous detection of these compounds was indicated. Finally, based on the strong electrocatalytic action of Fe₃O₄@r-GO/GC electrode toward both oxidation and reduction of nitrite, a sensitive amperometric sensor for nitrite determination was proposed. The Fe₃O₄@r-GO hybrid presented here shows favorable electrochemical features may hold great promise in the development of electrochemical sensors, molecular bioelectronic devices, biosensors and biofuel cells.

© 2013 Elsevier B.V. All rights reserved.
Web deposit

**Step 1:** Enter the article's metadata and then continue with more articles or complete the deposit by selecting 'Finish'. Mandatory fields are marked by an "***", but in general it is best practice to enter as much data as you can.

**Step 2:**
- `<journal_title>`: Journal of ISSN testing
- `<journal_abbreviation>`: JOILIN
- `<issn>`: 55555555
- `<journal_metadata>`
- `<publication_date>`: 2012

**Article Information**
- **Title:**
  - First Author: [First Name] [Last Name]
  - DOI:
  - URL:
  - First page: [First page] Last page: [Last page]

**Submit Journal DOI**

**Add Articles**
<table>
<thead>
<tr>
<th>Citation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>De Flora S, Bennicelli C, Bagnasco M. Rationale and mechanisms of cancer chemoprevention. Recent Results</td>
</tr>
</tbody>
</table>
CrossRef Metadata Search

Published 14 Aug 2008 in Journal of Psychoceramics volume 5 issue 11 on pages 1 to 3
Research funded by Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-SC0001091) | National Science Foundation (CHE-1152342)
Authors: Josiah Carberry
http://dx.doi.org/10.5555/12345678

Journal Article The Global State of Psychoceramics Research
Published 3 Feb 2013 in Annals of Psychoceramics B volume 2013 on pages 1 to 8
Research funded by Basic Energy Sciences, Office of Science, U.S. Department of Energy (high-energy-metaphysics-SC0001091) | National Science Foundation (psychoceramics-1152342)
Authors: Josiah Carberry
http://dx.doi.org/10.5555/515151

http://www.search.labs.crossref.org
Thank you!

http://www.crossref.org

rlammey@crossref.org

@crossref_news