 rahemym anjman arooyapai sardibeiran
(ERASE)
"brai Noysindsagan va
Mortjamman, Jehet Eahtar Mtabl be
Zaban Inglesis"
(Discussion)

In an innovative study, researchers have investigated the impact of different factors on the development of a certain condition. They found that factors such as age, gender, and environmental influences significantly contributed to the prevalence of the condition. The study also highlighted the importance of early intervention and the need for further research in this area to develop effective prevention strategies.

(Acknowledgements)

The authors would like to acknowledge the contributions of all the individuals and institutions who have supported this research. Special thanks go to Dr. John Doe, who provided invaluable guidance throughout the project.

This work was supported by the Medical Research Council.

(Grant Information)

[grant number xxx]

(References)

Goozner et al. 2009

Methods: The researchers conducted a retrospective analysis of patient records to evaluate the effectiveness of a new treatment protocol. They found that the protocol significantly reduced the recurrence rate of the condition compared to the existing treatment methods.
EASE Guidelines for Authors and Translators of Scientific Articles to be Published in English, June 2014

COPE Flowcharts (pandemic) (publication)

References and Suggested Further Reading:

Shafav D. Unpublished data has been used in the preparation of this paper. CSE (2014). "Guidelines for Authors and Translators of Scientific Articles to be Published in English, June 2014." EASE. www.ease.org.uk

References:

Section 1: An Overview of Mental Health

Mental health is a state of well-being in which an individual realizes their own abilities, can cope with the normal stresses of life, can work productively and fruitfully, and is able to make a contribution to their community.

1.1 Definition of Mental Health

Mental health refers to an individual's ability to cope with the demands of everyday life, including stress, illness, and other challenges.

1.2 Importance of Mental Health

Good mental health is essential for overall well-being and quality of life. It affects how we think, feel, and behave, and it influences our ability to cope with stress, make healthy decisions, and maintain relationships.

1.3 The Impact of Mental Health

Mental health issues can affect all aspects of life, including work, school, and personal relationships. They can also lead to other health problems, such as physical illness, substance abuse, and suicide.

Section 2: Common Mental Health Disorders

2.1 Anxiety Disorders

Anxiety disorders are a group of mental health disorders characterized by excessive and persistent anxiety or fear. Common anxiety disorders include generalized anxiety disorder, panic disorder, and social anxiety disorder.

2.2 Depression

Depression is a mood disorder that affects how you feel, think, and behave. It can cause feelings of sadness, hopelessness, and loss of interest in activities that once brought pleasure.

2.3 Substance Use Disorders

Substance use disorders are a group of mental health disorders characterized by problematic patterns of substance use. Common substance use disorders include alcohol use disorder and drug use disorder.

2.4 Eating Disorders

Eating disorders are mental health disorders characterized by abnormal attitudes toward body shape and weight. Common eating disorders include anorexia nervosa and bulimia nervosa.

Section 3: Risk Factors and Protective Factors

3.1 Risk Factors

Risk factors are factors that increase the likelihood of developing a mental health disorder. Common risk factors include genetic factors, early-life stress, and a history of mental health problems in family members.

3.2 Protective Factors

Protective factors are factors that decrease the likelihood of developing a mental health disorder. Common protective factors include strong social support, effective coping skills, and a healthy lifestyle.

Section 4: Treatment Options

4.1 Psychotherapy

Psychotherapy is a treatment approach that involves talking to a mental health professional, such as a therapist or counselor. Common types of psychotherapy include cognitive-behavioral therapy, interpersonal therapy, and psychodynamic therapy.

4.2 Medication

Medication is a treatment approach that involves taking prescription drugs to manage symptoms of a mental health disorder. Common medication types include antidepressants, antipsychotics, and mood stabilizers.

4.3 Integrative Approaches

Integrative approaches combine traditional medical treatments with complementary and alternative therapies. Common integrative approaches include yoga, meditation, and mindfulness.

Section 5: Prevention and Early Intervention

5.1 Prevention

Prevention involves taking steps to reduce the risk of developing a mental health disorder. Common prevention strategies include promoting healthy behaviors, teaching coping skills, and providing support to individuals at risk.

5.2 Early Intervention

Early intervention involves providing treatment and support to individuals who are at risk for developing a mental health disorder. Common early intervention strategies include identifying and addressing risk factors early, providing support and resources, and monitoring for signs of mental health problems.

Section 6: Policy and Public Health

6.1 Policy

Policy involves creating laws and regulations to address mental health issues. Common policy strategies include increasing funding for mental health services, improving access to care, and reducing stigma.

6.2 Public Health

Public health involves promoting mental health and preventing mental health problems at the population level. Common public health strategies include educating the public about mental health, providing community support, and monitoring mental health trends.

Section 7: Conclusion

Mental health is a critical aspect of overall well-being, and it affects all areas of life. Common mental health disorders include anxiety disorders, depression, substance use disorders, and eating disorders. Risk factors and protective factors influence the development of mental health disorders. Treatment options, including psychotherapy, medication, and integrative approaches, can be effective for managing symptoms. Prevention and early intervention are crucial for reducing the risk of developing mental health problems. Policy and public health strategies are essential for addressing mental health issues at the population level.
Appendix: Simplicity

...

Appendix: Ambiguity

...

Appendix: Russell and Whitehead's Principia Mathematica

...

Appendix: Proof Reading and Editing

...

Appendix: Text-Tables

...

Appendix: Plagiarism

...

Appendix: Editing
EASE Guidelines for Authors and Translators of Scientific Articles to be Published in English, June 2014

Table: Plurals

<table>
<thead>
<tr>
<th>Singular</th>
<th>Plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td>apples</td>
</tr>
<tr>
<td>potato</td>
<td>potatoes</td>
</tr>
<tr>
<td>banana</td>
<td>bananas</td>
</tr>
<tr>
<td>onion</td>
<td>onions</td>
</tr>
<tr>
<td>tomato</td>
<td>tomatoes</td>
</tr>
<tr>
<td>cucumber</td>
<td>cucumbers</td>
</tr>
</tbody>
</table>

Example: The students collected apples, apples, and apples for the harvest festival.

Afradiyeh Kdr in Tathin Dostoura Rumakat Dashenat (In Arabic)

Hartley 2010, Norris 2011. "our opinion" in this study. "that study", "that paper", "our results" in "this study" Halal Nutrition, EASE Guidelines for Authors and Translators of Scientific Articles to be Published in English, June 2014. Available from http://www.ease.org.uk/publications/ease-toolkit-authors

AuthorAID Resource Library. Available from http://www.authoraid.org/about/duplicatepublication

BioMed Central policy on duplicate publication. Available from http://www.biomedcentral.com/about/duplicatepublication

Gasparian AY, Ayvazyan L, Blackmore H., Kitas GD. 2011. Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatology

© 2014 European Association of Science Editors, www.ease.org.uk. Non-commercial printing allowed
Consider publishing a review article once you have completed the first year of your PhD studies because: (1) you should already have a clear picture of the field and an up-to-date stock of references in your computer; (2) research results sometimes take a long time to get (in agronomy: 3 years of field experiments...); (3) journals love review articles (they tend to improve the impact factor); (4) the rejection rate of review articles is low (although some journals publish solicited reviews only, so you might want to contact the Editor first); (5) the non-specialist reader - such as a future employer - will love review articles (they tend to improve the impact rating); (6) the Phenomenon is amplified by the “digital explosion” so virtually no one reads from Title to References. This is understandable (and citable) without reading other parts. The average time spent reading an article is falling, so you might want to contact the Editor first; (5) the non-specialist reader - such as a future employer - will understand a review article more easily than an original article with detailed results.

Alternatively, publish meta-analyses or other database-based research articles.

Each part/item of an article should preferably be “almost” understandable (and citable) without reading other parts. The average time spent reading an article is falling, so virtually no one reads from Title to References. This phenomenon is amplified by the “digital explosion”, whereby search engines identify individual items, such as abstracts or figures, rather than intact articles.

Written by Eric Lichtfouse
eric.lichtfouse@dijon.inra.fr

For more advice, see EASE Toolkit for Authors
(www.ease.org.uk/publications/ease-toolkit-authors)
Appendix: Abstracts

Key elements of abstracts

Researchers are quite often in a “box” of technical details – the “important” things they focus on day in and day out. As a result, they frequently lose sight of 4 items essential for any readable, credible, and relevant IMRaD¹ article: the point of the research, the research question, its answer, and the consequences of the study.

To help researchers to get out of the box, I ask them to include 5 key elements in their article and in their abstract. I describe briefly the elements below and illustrate them with a fictitious abstract.

Key element 1 (background): the point of the research – why should we care about the study? This is usually a statement of the BIG problem that the research helps to solve and the strategy for helping to solve it. It prepares the reader to understand the specific research question.

Key element 2 (objectives): the specific research question – the basis of credible science. To be clear, complete and concise, research questions are stated in terms of relationships between the variables that were investigated. Such specific research questions tie the story together – they focus on credible science.

Key element 3 (methods): a precise description of the methods used to collect data and determine the relationships between the variables.

Key element 4 (results): the major findings – not only data, but the RELATIONSHIPS found that lead to the answer. Results should generally be reported in the past tense but the authors’ interpretation of the factual findings is in the present tense – it reports the authors’ belief of how the world IS. Of course, in a pilot study such as the following example, the authors cannot yet present definitive answers, which they indicate by using the words “suggest” and “may”.

Key element 5 (conclusions): the consequences of the answers – the value of the work. This element relates directly back to the big problem: how the study helps to solve the problem, and it also points to the next step in research.

Here is a fictitious example.

Predicting malaria epidemics in Ethiopia

Abstract

BACKGROUND Most deaths from malaria could be prevented if malaria epidemics could be predicted in local areas, allowing medical facilities to be mobilized early. **OBJECTIVES** As a first step toward constructing a predictive model, we determined correlations between meteorological factors and malaria epidemics in Ethiopia. **METHODS** In a retrospective study, we collected meteorological and epidemic data for 10 local areas, covering the years 1963-2006. Poisson regression was used to compare the data. **RESULTS** Factors AAA, BBB, and CCC correlated significantly (P<0.05) with subsequent epidemics in all 10 areas. A model based on these correlations would have a predictive power of about 30%. **CONCLUSIONS** Meteorological factors can be used to predict malaria epidemics. However, the predictive power of our model needs to be improved and validated in other areas.

This understandable and concise abstract forms the “skeleton” for the entire article. A final comment: This example is based on an actual research project and, at first, the author was in a “box” full of the mathematics, statistics, and computer algorithms of his predicting model. This was reflected in his first version of the abstract, where the word “malaria” never appeared.

Written by Ed Hull
edhull@home.nl

(for more information, see Bless and Hull 2008)

¹IMRaD stands for Introduction, Methods, Results and Discussion.
Appendix: Ambiguity

Empty words and sentences

Many English words are empty – they do not add information but require the reader to fill in information or context to be understood. The reader is forced to supply his or her own interpretation, which could be different from what you, the writer, mean.

Empty words seem to give information and uncritical readers do not notice them – that is why they work so well for marketing texts. However, empty words do not belong in articles reporting scientific research. Empty words require the reader to supply the meaning – very dangerous. Concise and clear communication requires words that convey specific meaning.

Examples

It is important that patients take their medicine.

• Note that to a physician the meaning is probably entirely different than to the sales manager of a pharmaceutical company. “Important” is one of our best-loved, but empty, words – it fits every situation.

The patient was treated for XXX.

• “Treated” is empty; we do not know what was done. One reader could assume that the patient was given a certain medicine, while another reader could assume that the patient was given a different medicine. Perhaps the patient was operated on, or sent to Switzerland for a rest cure.

The patient reacted well to the medicine.

• “Reacted well” gives us a positive piece of information, but otherwise it is empty; we do not know how the patient reacted.

The patient’s blood pressure was low.

• We interpret “high/low blood pressure” to mean “higher/lower than normal”, but we, the readers, have to supply that reference standard. A more concise statement is: The patient’s blood pressure was 90/60.

Empty words and phrases not only require the reader to supply the meaning, they also contribute to a wordy blah-blah text. In scientific articles they destroy credibility. Here are some examples.

It has been found that the secondary effects of this drug include…

• Better: The secondary effects of this drug include…(ref.). Or, if these are your new results: Our results show that the secondary effects of this drug include…

We performed a retrospective evaluation study on XXX.

• “Performed a study” is a much overused and rather empty phrase. Better: We retrospectively evaluated XXX.

More examples that require the reader to supply information if it is not evident from the context:

• quality
• good/bad
• high/low
• large/small
• long/short
• proper/properly (e.g. “…a proper question on the questionnaire…”)
• As soon as possible…

Written by Ed Hull
edhull@home.nl
Appendix: Cohesion

Cohesion – the glue

The word “cohesion” means “unity”, “consistency”, and “solidity”. Building cohesion into your text makes life easier for your readers – they will be much more likely to read the text. Cohesion “glues” your text together, focusing the readers’ attention on your main message and thereby adding credibility to your work.

Think of your text as a motorcycle chain made up of separate links, where each sentence is one link. A pile of unconnected links is worthless – it will never drive your motorcycle. Similarly, a pile of unconnected sentences is worthless – it will never drive your message home.

To build a cohesive text, you have to connect your sentences together to make longer segments we call paragraphs. A cohesive paragraph clearly focuses on its topic. You then need to connect each paragraph with the previous paragraph, thereby linking the paragraph topics. Linking paragraphs results in building cohesive sections of your article, where each section focuses on its main topic. Then, link the sections to each other and, finally, connect the end of your article to the beginning, closing the loop – now the chain will drive our motorcycle. Let’s look at linking techniques.

Basic guidelines for building a cohesive story:
1. Link each sentence to the previous sentence.
2. Link each paragraph to the previous paragraph.
3. Link each section to the previous section.
4. Link the end to the beginning.

Linking techniques
Whether you want to link sentences, paragraphs, sections or the beginning to the end, use 2 basic linking techniques:

- Use linking words and phrases, such as: however, although, those, since then... An example: Our research results conflict with those of Smith and Jones. To resolve those differences we measured...
- Repeat key words and phrases – do not use synonyms. In scientific writing, repetition sharpens the focus. Repetition especially helps the reader to connect ideas that are physically separated in your text. For example: Other investigators have shown that microbial activity can cause immobilization of labile soil phosphorus. Our results suggest that, indeed, microbial activity immobilizes the labile soil phosphorus.

The example below illustrates how to link your answer to your research question, thus linking the Discussion with the Introduction.

In the Introduction, the research hypothesis is stated. For example: The decremental theory of aging led us to hypothesize that older workers in “speed” jobs perform less well and have more absences and more accidents than other workers have.

In the Discussion, the answer is linked to the hypothesis: Our findings do not support the hypothesis that older workers in speed jobs perform less well and have more absences and more accidents than other workers have. The older workers generally earned more, were absent less often, and had fewer accidents than younger workers had. Furthermore, we found no significant difference between...

Written by Ed Hull
edhull@home.nl
Appendix: Ethics

Publication ethics checklist for authors

EXPLANATION: obligatory declarations applying to all manuscripts are printed in bold.

Original or acceptable secondary publication
☐ No part of this manuscript (MS) has been published, except for passages that are properly cited.
☐ An abstract/summary of this MS has been published in…………………………………..…………………………..…………………………………………………………
☐ This MS has already been published in ……………..………………………………………………………… but in…………………………………… language. A full citation to the primary publication is included, and the copyright owner has agreed to its publication in English.
☐ No part of this MS is currently being considered for publication elsewhere.
☐ In this MS, original data are clearly distinguished from published data. All information extracted from other publications is provided with citations.

Authorship
☐ All people listed as authors of this MS meet the authorship criteria, ie they contributed substantially to study planning, data collection or interpretation of results and wrote or critically revised the MS and approved its final submitted version and agree to be accountable for all aspects of the work (ICMJE 2013).
☐ All people listed as authors of this MS are aware of it and have agreed to be listed.
☐ No person who meets the authorship criteria has been omitted.

Ethical experimentation and interpretation
☐ The study reported in this MS involved human participants and it meets the ethical principles of the Declaration of Helsinki (WMA 2013). Data have been disaggregated by sex (and, whenever possible, by race).
☐ The study reported in this MS meets the Consensus Author Guidelines on Animal Ethics and Welfare for Veterinary Journals2 about humane treatment of animals and has been approved by an ethical review committee.
☐ The study reported in this MS meets other ethical principles, namely ………………………………………
☐ I and all the other authors of this MS did our best to avoid errors in experimental design, data presentation, interpretation, etc. However, if we discover any serious error in the MS (before or after publication), we will alert the editor promptly.
☐ None of our data presented in this MS has been fabricated or distorted, and no valid data have been excluded. Images shown in figures have not been manipulated to make a false impression on readers.
☐ Results of this study have been interpreted objectively. Any findings that run contrary to our point of view are discussed in the MS.
☐ The article does not, to the best of our knowledge, contain anything that is libellous, illegal, infringes anyone’s copyright or other rights, or poses a threat to public safety.

Acknowledgements
☐ All sources of funding for the study reported in this MS are stated.
☐ All people who are not listed as authors but contributed considerably to the study reported in this MS or assisted in its writing (eg author’s editors, translators, medical writers) are mentioned in the Acknowledgements.
☐ All people named in the Acknowledgements have agreed to this. However, they are not responsible for the final version of this MS.
☐ Consent has been obtained from the author(s) of unpublished data cited in the MS.
☐ Copyright owners of previously published figures or tables have agreed to their inclusion in this MS.

Conflict of interest
☐ All authors of this study have signed a conflict of interest statement and disclosed any financial or personal links with people or organizations that have a financial interest in this MS3.

Date:…………………………………………………………
Signature:…………………………………………………………
MS title:…………………………………………………………

Compiled by Sylwia Ufnalska
sylwia.ufnalska@gmail.com

2 See www.veteditors.org/ethicsconsensusguidelines.html
3 See www.icmje.org/coi_disclosure.pdf

©2014 European Association of Science Editors (www.ease.org.uk). Non-commercial printing allowed.
Appendix: Plurals

Examples of irregular plurals deriving from Latin or Greek

<table>
<thead>
<tr>
<th>Singular</th>
<th>Plural</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>-ae</td>
<td>alga – algae, larva – larvae</td>
</tr>
<tr>
<td></td>
<td>rarely -ata</td>
<td>stoma – stomata</td>
</tr>
<tr>
<td>-ex</td>
<td>-ices</td>
<td>index – indices (or indexes*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apex – apices (or apexes*)</td>
</tr>
<tr>
<td>-ies</td>
<td>-ies</td>
<td>species, series, facies</td>
</tr>
<tr>
<td>-is</td>
<td>-es</td>
<td>axis – axes, hypothesis – hypotheses</td>
</tr>
<tr>
<td>-ix</td>
<td>-ices</td>
<td>appendix – appendices (or appendices*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matrix – matrices (or matrixes*)</td>
</tr>
<tr>
<td>-on</td>
<td>-a</td>
<td>phenomenon – phenomena</td>
</tr>
<tr>
<td></td>
<td></td>
<td>criterion – criteria</td>
</tr>
<tr>
<td>-um</td>
<td>-a</td>
<td>datum – data**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bacterium – bacteria</td>
</tr>
<tr>
<td>-us</td>
<td>-i</td>
<td>locus – loci, fungus – fungi (or funguses*)</td>
</tr>
<tr>
<td></td>
<td>rarely -uses</td>
<td>sinus – sinuses</td>
</tr>
<tr>
<td></td>
<td>or -era</td>
<td>genus – genera</td>
</tr>
</tbody>
</table>

* Acceptable anglicized plurals that are also listed in dictionaries.

** In non-scientific use, usually treated as a mass noun (like information, etc.)

It must be remembered that some nouns used in everyday English also have irregular plural forms (e.g. woman – women, foot – feet, tooth – teeth, mouse – mice, leaf – leaves, life – lives, tomato – tomatoes) or have no plural form (e.g. equipment, information, news). For more examples, see CSE (2014). If in doubt, consult a dictionary.

Compiled by Sylwia Ufnalska

sylwia.ufnalska@gmail.com
Appendix: Simplicity

Examples of expressions that can be simplified or deleted (∅)

<table>
<thead>
<tr>
<th>Long or (sometimes) wrong</th>
<th>Better choice (often)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounted for by the fact that</td>
<td>because</td>
</tr>
<tr>
<td>as can be seen from Figure 1, substance Z reduces twitching</td>
<td>substance Z reduces twitching (Fig. 1)</td>
</tr>
<tr>
<td>at the present moment</td>
<td>now</td>
</tr>
<tr>
<td>bright yellow in colour</td>
<td>bright yellow</td>
</tr>
<tr>
<td>conducted inoculation experiments on</td>
<td>inoculated</td>
</tr>
<tr>
<td>considerable amount of</td>
<td>much</td>
</tr>
<tr>
<td>despite the fact that</td>
<td>although</td>
</tr>
<tr>
<td>due to the fact that</td>
<td>because</td>
</tr>
<tr>
<td>for the reason that</td>
<td>because</td>
</tr>
<tr>
<td>if conditions are such that</td>
<td>if</td>
</tr>
<tr>
<td>in a considerable number of cases</td>
<td>often</td>
</tr>
<tr>
<td>in view of the fact that</td>
<td>because</td>
</tr>
<tr>
<td>it is of interest to note that</td>
<td>∅</td>
</tr>
<tr>
<td>it may, however, be noted that</td>
<td>but</td>
</tr>
<tr>
<td>large numbers of</td>
<td>many</td>
</tr>
<tr>
<td>lazy in character</td>
<td>lazy</td>
</tr>
<tr>
<td>methodology</td>
<td>methods</td>
</tr>
<tr>
<td>owing to the fact that</td>
<td>because</td>
</tr>
<tr>
<td>oval in shape</td>
<td>oval</td>
</tr>
<tr>
<td>prior to</td>
<td>before</td>
</tr>
<tr>
<td>taken into consideration</td>
<td>considered</td>
</tr>
<tr>
<td>terminate</td>
<td>end</td>
</tr>
<tr>
<td>the test in question</td>
<td>this test</td>
</tr>
<tr>
<td>there can be little doubt that this is</td>
<td>this is probably</td>
</tr>
<tr>
<td>to an extent equal to that of X</td>
<td>as much as X</td>
</tr>
<tr>
<td>utilize</td>
<td>use</td>
</tr>
<tr>
<td>whether or not</td>
<td>whether</td>
</tr>
</tbody>
</table>

Based on O’Connor (1991)
Appendix: Spelling

Examples of differences between British and American spelling

<table>
<thead>
<tr>
<th>British English</th>
<th>American English</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ae-</td>
<td>-e-</td>
</tr>
<tr>
<td>e.g. aetiology, faeces, haematology</td>
<td>e.g. etiology, feces, hematology</td>
</tr>
<tr>
<td>-ce in nouns, -se in verbs</td>
<td>-se in nouns and verbs</td>
</tr>
<tr>
<td>e.g. defence, licence/license, practice/practise</td>
<td>e.g. defense, license</td>
</tr>
<tr>
<td>(but practice as both noun and verb)</td>
<td></td>
</tr>
<tr>
<td>-ise or -ize*</td>
<td>-ize</td>
</tr>
<tr>
<td>e.g. organise/organize</td>
<td>e.g. organize</td>
</tr>
<tr>
<td>-isation or -ization*</td>
<td>-ization</td>
</tr>
<tr>
<td>e.g. organisation/organization</td>
<td>e.g. organization</td>
</tr>
<tr>
<td>-led, -ling, -lor, etc.</td>
<td>-led, -ling, -lor, etc.</td>
</tr>
<tr>
<td>e.g. labelled, travelling, councillor</td>
<td>e.g. labeled, traveling, councilor</td>
</tr>
<tr>
<td>(but fulfill, skillful)</td>
<td>(but fulfill, skillful)</td>
</tr>
<tr>
<td>-oe-</td>
<td>-e-</td>
</tr>
<tr>
<td>e.g. diarrhoea, foetus, oestrogen</td>
<td>e.g. diarrhea, fetus, estrogen</td>
</tr>
<tr>
<td>-ogue</td>
<td>-og or -ogue</td>
</tr>
<tr>
<td>e.g. analogue, catalogue</td>
<td>e.g. analog/anologue, catalog/catalogue</td>
</tr>
<tr>
<td>-our</td>
<td>-or</td>
</tr>
<tr>
<td>e.g. colour, behaviour, favour</td>
<td>e.g. color, behavior, favor</td>
</tr>
<tr>
<td>-re</td>
<td>-er</td>
</tr>
<tr>
<td>e.g. centre, fibre, metre, litre</td>
<td>e.g. center, fiber, meter, liter</td>
</tr>
<tr>
<td>(but meter for a measuring instrument)</td>
<td></td>
</tr>
<tr>
<td>-yse</td>
<td>-yze</td>
</tr>
<tr>
<td>e.g. analyse, dialyse</td>
<td>e.g. analyze, dialyze</td>
</tr>
<tr>
<td>aluminium</td>
<td>aluminium or aluminium**</td>
</tr>
<tr>
<td>grey</td>
<td>gray</td>
</tr>
<tr>
<td>mould</td>
<td>mold</td>
</tr>
<tr>
<td>programme (general) or program (computer)</td>
<td>program</td>
</tr>
<tr>
<td>sulphur or sulfur**</td>
<td>sulfur</td>
</tr>
</tbody>
</table>

*One ending should be used consistently.

**Recommended by the International Union of Pure and Applied Chemistry and the Royal Society of Chemistry.

For more examples, see CSE (2014). If in doubt, consult a dictionary. Obviously, American and British English slightly differ not only in spelling but also in word use, grammar, punctuation, etc. However, those differences are outside the scope of this document.

Compiled by Sylwia Ufnalska
sylwia.ufnalska@gmail.com

©2014 European Association of Science Editors (www.ease.org.uk). Non-commercial printing allowed.
Arranging statistical information in a classic table and referring to it elsewhere means that readers do not access the information as immediately as they would when reading about it within the sentence. They have to find the table in the document (which may be on another page), losing some time. This slightly decreases the strength of the information. Quicker access to the information can be achieved within a sentence, but this is not an effective structure if more than 2 numbers are to be compared. In such situations, a “text-table” appears to be ideal for communicating information to the reader quickly and comprehensibly (Tufte 2001). The text-table is a simple table with no graphic elements, such as grid lines, rules, shading, or boxes. The text-table is embedded within a sentence, so no reference to it is needed. Keeping the power of tabular arrangements, text-tables immediately convey the message. Look at the following examples.

Original sentence:
Iron concentration means (±standard deviation) were as follows: 11.2±0.3 mg/dm3 in sample A, 12.3±0.2 mg/dm3 in sample B, and 11.4±0.9 mg/dm3 in sample C.

Modified:
Iron concentration means (±standard deviation, in mg/dm3) were as follows:
- Sample B: 12.3±0.2
- Sample C: 11.4±0.9
- Sample A: 11.2±0.3

Original sentence (do Carmo et al. 2011):
"Prior to rotavirus vaccine introduction, there was a trend of declining diarrhea-related mortality among children younger than 1 y (relative reduction [RR] = 0.87/y; 95% CI 0.83–0.94; p < 0.001), 1 to < 2 y of age (RR = 0.96/y; 95% CI 0.91–1.02; p = 0.23) and 2 to 4 y of age (RR = 0.93/y; 95% CI 0.87–1.00; p = 0.06)."

Modified:
Prior to rotavirus vaccine introduction, there was a trend of declining diarrhea-related mortality among children in all age groups (RR stands for relative reduction per year):
- < 1 y: RR = 0.87 (95% CI 0.83–0.94; p < 0.001)
- 1 to < 2 y: RR = 0.96 (95% CI 0.91–1.02; p = 0.23)
- 2 to 4 y: RR = 0.93 (95% CI 0.87–1.00; p = 0.06)

Some rules for arranging text-tables
1. The larger a text-table is, the less power it has.
2. The sentence that precedes the text-table acts as a heading that introduces the information the text-table represents, and usually ends with a colon. Text-tables should have neither headings nor footnotes.
3. Indentation of text-tables should fit the document’s layout.
4. Occasional changes in font (such as italics, bold, a different typeface) may be used, but with caution. They can, however, put some emphasis on the tabular part.
5. Do not use too many text-tables in one document or on one page.
6. In addition to the above rules, apply rules for formatting regular tables. For example, numbers should be given in 2-3 effective digits; ordering rows by size and their correct alignment will facilitate reading and comparison of values; space between columns should be neither too wide nor too narrow.

Written by Marcin Kozak
nyggus@gmail.com
(for more information, see Kozak 2009)
About EASE

Background information about EASE and the EASE Guidelines

The European Association of Science Editors (EASE) was formed in May 1982 at Pau, France, from the European Life Science Editors’ Association (ELSE) and the European Association of Earth Science Editors (Editerra). Thus in 2012 we celebrated the 30th anniversary of our Association.

EASE is affiliated to the International Union of Biological Sciences (IUBS), the International Union of Geological Sciences (IUGS), the International Organization for Standardization (ISO). Through its affiliation to IUBS and IUGS, our Association is also affiliated to the International Council for Science (ICSU) and is thereby in formal associate relations with UNESCO.

EASE cooperates with the International Society for Addiction Journal Editors (ISAJE), International Association of Veterinary Editors (IAVE), International Society of Managing and Technical Editors (ISMTE), the Council of Science Editors (CSE), and the Association of Earth Science Editors (AESE) in North America. Our other links include the African Association of Science Editors (AASE), the Association of Learned and Professional Society Publishers (ALPSP), the European Medical Writers Association (EMWA), the Finnish Association of Science Editors and Journalists (FASEJ), Mediterranean Editors and Translators (MET), the Society of English-Native-Speaking Editors and Proofreaders (SENSE), and the Society for Editors and Proofreaders (SfEP).

We have major conferences every 2-3 years in various countries. EASE also organizes occasional seminars, courses, and other events between the conferences.

Since 1986, we publish a journal, now entitled European Science Editing. It is distributed to all members 4 times a year. It covers all aspects of editing and includes original articles and meeting reports, announces new developments and forthcoming events, reviews books, software and online resources, and highlights publications of interest to members. To facilitate the exchange of ideas between members, we also use an electronic EASE Forum, the EASE Journal Blog, and our website (www.ease.org.uk).

In 2007, we issued the EASE statement on inappropriate use of impact factors. Its major objective was to recommend that “journal impact factors are used only – and cautiously – for measuring and comparing the influence of entire journals, but not for the assessment of single papers, and certainly not for the assessment of researchers or research programmes either directly or as a surrogate”.

In 2010, we published EASE Guidelines for Authors and Translators of Scientific Articles. Our goal was to make international scientific communication more efficient and help prevent scientific misconduct. This document is a set of generalized editorial recommendations concerning scientific articles to be published in English. We believe that if authors and translators follow these recommendations before submission, their manuscripts will be more likely to be accepted for publication. Moreover, the editorial process will probably be faster, so authors, translators, reviewers and editors will then save time.

EASE Guidelines are a result of long discussions on the EASE Forum and during our 2009 conference in Pisa, followed by consultations within the Council. The document is updated annually and is already available in 21 languages: Arabic, Bangla, Bosnian, Bulgarian, Chinese, Croatian, Czech, English, Estonian, French, German, Hungarian, Italian, Japanese, Korean, Persian, Polish, Portuguese (Brazilian), Romanian, Russian, Spanish, and Turkish. The English original and its translations can be freely downloaded as PDFs from our website. We invite volunteers to translate the document into other languages.

Many institutions promote EASE Guidelines (e.g. see the European Commission Research & Innovation website), and many articles about this document have been published. Scientific journals also help in its popularization, by adding at the beginning of their instructions for authors a formula like:

Before submission, follow EASE Guidelines for Authors and Translators, freely available at www.ease.org.uk/publications/author-guidelines in many languages. Adherence should increase the chances of acceptance of submitted manuscripts.

In 2012 we launched the EASE Toolkit for Authors, freely available on our website. The Toolkit supplements EASE Guidelines and includes more detailed recommendations and resources on scientific writing and publishing for less experienced researchers. Besides, EASE participated in the sTANDEM project (www.standem.eu), concerning standardized tests of professional English for healthcare professionals worldwide. Our Association also supports the campaigns Healthcare Information For All by 2015 (www.hifa2015.org) and AllTrials (www.alltrials.net).

For more information about our Association, member’s benefits, and major conferences, see the next page and our website.
Skills-Communication-Fellowship

EASE is an internationally oriented community of individuals from diverse backgrounds, linguistic traditions, and professional experience, who share an interest in science communication and editing. Our Association offers the opportunity to stay abreast of trends in the rapidly changing environment of scientific publishing, whether traditional or electronic. As an EASE member, you can sharpen your editing, writing and thinking skills; broaden your outlook through encounters with people of different backgrounds and experience, or deepen your understanding of significant issues and specific working tools. Finally, in EASE we have fun and enjoy learning from each other while upholding the highest standards.

EASE membership offers the following benefits

- A quarterly journal, *European Science Editing*, featuring articles related to science and editing, book and web reviews, regional and country news, and resources
- An electronic forum and EASE journal blog for exchanging ideas
- A major conference every 2-3 years
- Seminars and workshops on hot topics
- Science Editors’ Handbook, covering everything from on-screen editing to office management, peer review, and dealing with the media
- Advertising of your courses or services free of charge on the EASE website
- Discounts on job advertisements on the EASE website
- Opportunities to share problems and solutions with kindred spirits
- Good networking and contacts for freelancers
- Chances to meet international colleagues from a range of disciplines
- Leads for jobs, training, and employment options
- Discounts on editorial software, courses, etc.

Our Members

EASE welcomes members from every corner of the world. They can be found in 50 countries: from Australia to Venezuela by way of China, Russia and many more. EASE membership cuts across many disciplines and professions. Members work as commissioning editors, academics, translators, publishers, web and multi-media staff, indexers, graphic designers, statistical editors, science and technical writers, author’s editors, journalists, proofreaders, and production personnel.

Major Conferences

2014 Split, Croatia
2012 Tallinn, Estonia (30th Anniversary)
2009 Pisa, Italy
2006 Kraków, Poland
2003 Bath, UK
2003 Halifax, Nova Scotia, Canada
2000 Tours, France
1998 Washington, DC, USA (joint meeting with CBE and AESE)
1997 Helsinki, Finland
1994 Budapest, Hungary
1991 Oxford, UK
1989 Ottawa, Canada (joint meeting with CBE and AESE)
1988 Basel, Switzerland
1985 Holmenkollen, Norway
1984 Cambridge, UK
1982 Pau, France

©2014 European Association of Science Editors (www.ease.org.uk). Non-commercial printing allowed.