دليل (الجمعية الأوروبية)
لمحرري المقالات العلمية
المترجمي ومؤلفي المقالات العلمية
النشرية باللغة الإنكليزية
بالإسم العلمي الدولي. لا حاجة لتكرار المعلومات.
الوازدة في العنوان في قطر المفصل.
قائمة المؤلفين: List of authors: هم الأشخاص الذين
شاركوا بشكل أساسي في التخطيط للبحث. وجمع
المعلومات، وتحليل النتائج. وتأليف وتعديل المقال
واعتقادهما بنسخة النهاية. وكانوا مصنعين ب كافة
جوانب العمل (2013). بحيث يتم ترتيب أسماء
المؤلفين حسب نسبة مشاركتهم في البحث، ويجب أن
يرفق مع أسماء المؤلفين أسماء المؤسسات والجهات
التي تتموضع إليها (خلال مدة تنفيذ الدراسة).
بالإضافة إلى عناوين الحالي من أجل مراستهم. و
يجب ذكر البرمج الإلكتروني للكافة المؤلفين. وبالتالي
يمكن التواصل معهم بسهولة.
العنوان: Title يجب أن يكون كاملاً دون إغفال عن المعلومات
المتخصصة. ويجب أن يكون محتوى يعبر عن الإعتبار عند تنظيم المقال
أن إمكانية الوصول إلى المعرفة التي يبحث عنها
تزيد إذًا تفعيل هذه المعلومة الذي يتوق نحوها
(Open & Swan 1990). على سبيل المثال يجب أن
تتضمن مقتطفات المناقشة الجغرافية المقالات التالية.
العنوان: Title يجب أن يكون عنوان واضحاً ومهما
حتى للمختصين في مجال الدراسة.
ويفهم عن طريق مقالة مراجعة، والمقالات المراجعة،
معالجات المراجعة، والمقالات المعالجة، ودراسة
لبحث واسعة، ودراسة شاملة، وبحث شامل
فترة المفصل بنطاق دالي أي عرض المحاور الرئيسية
بدنالอารมن إلى النهاية (2014). ويجب عدم
إشارة إلى المفاهيم. كما أن
يجب أن يكون محتوى بشكل مستقل عن المقال. كذلك
من أجل تحقيق تواصل علمي عالمي أكثر فعالية. يجب أن
تكون المقابلات البحثية والمفاهيم العلمية الأخرى
مختصرة، وواضحة. أداة تعليمية تم انشاءه موضع هو،
ومحرري المراجع، والمترجمين المقالات، مساعدة إلى تائف
الموضوع مع كلها. إذا، إذا. لجوده هذه التفاوت
ضروري أمر هو القواعد على الاعتماد عند السليم
مستحيل أمر الكلام إلى الوصول لأن.
في البداية يجب:
• خطط ونظم بعناية (Heng et al. 2011) عدم
البدء بكتابة المقال ملامك يمكن أن تكون
أيكون واحدة (Chippendorf et al. 2010)
وعليه الحصول على
• تحقيق النتائج الخاصة بالمقالة. وبعد ذلك يقوم تنظيف
المقال من أجل أن يسابق المجلة من حيث الطول. وعدد
الأشكال المطلوبة أو المسموح بها... إلخ.
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors." (RIN 2008).

References

COPE flow charts

Discussion

The results of this research indicated that the relationship between the use of digital technologies and students' academic performance was positive. The data showed a significant increase in the use of digital tools by students, which contributed to their better academic achievement. The findings also highlighted the importance of integrating digital technologies into the educational process. It is recommended for future research to explore the impact of digital technologies on various aspects of learning, such as creativity and critical thinking skills.

Acknowledgements

This research was supported by the Medical Research Council [grant number xxxx].

The presence of a significant number of medical schools and hospitals in the region suggests a potential for collaboration in the health sector. Further research could explore the feasibility of establishing partnerships between local institutions and international universities to enhance educational and research opportunities.

List of additional keywords:

Appendix:

List of abbreviations:

The use of non-pharmacological interventions in the management of chronic pain is gaining increasing attention. This study aimed to evaluate the effectiveness of a mindfulness-based intervention in reducing pain intensity and improving quality of life in patients with chronic lower back pain.

COPES.

References

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors." (RIN 2008).

Methods

The present study investigated the impact of mindfulness-based interventions on pain management in patients with chronic lower back pain. A randomized controlled trial was conducted with a sample of 100 participants aged between 18 and 60 years. The intervention group received a 12-week mindfulness-based intervention, while the control group received standard care.

Results

The results of this study showed that the mindfulness-based intervention had a significant effect on reducing pain intensity and improving quality of life in patients with chronic lower back pain. The average pain intensity in the intervention group decreased by 20% compared to the control group. Moreover, the quality of life significantly improved in the intervention group.

Discussion

The findings of this study suggest that mindfulness-based interventions can be an effective approach for managing chronic pain. The intervention was well-received by the participants, indicating its potential for implementation in clinical settings.

Conclusion

Mindfulness-based interventions can be effectively used to manage chronic pain. Further research is needed to explore the long-term effects of these interventions and to evaluate the cost-effectiveness of integrating mindfulness-based interventions into routine clinical practice.
Forests are very important ecosystems...
Appendix: Simplicity

The property is described by the term "simplicity," which refers to the concept of minimizing complexity. A scientific article should ideally be written in a clear and concise manner, without unnecessary complications. This can be achieved by using straightforward language, avoiding jargon, and providing clear examples and explanations. The goal is to make the article accessible to a wide audience, including those who may not have a strong background in the specific field.

Norris (2011) provides an example of how simplicity can be achieved in scientific writing. He argues that researchers should strive to make their findings clear and accessible to non-specialists, using simple language and avoiding overly technical terms. This approach not only makes the research more understandable, but also enhances its impact and relevance.

Appendix: Cohesion

Cohesion is related to the way ideas are connected within a text. It involves using linking words and phrases to bind together sentences and paragraphs, creating a logical and cohesive flow of ideas. Good cohesion helps readers follow the argument and understand the connections between different parts of the text.

Burrough-Boenisch (2013) emphasizes the importance of cohesion in scientific writing, stating that it is crucial for maintaining the reader's attention and facilitating comprehension. He suggests using parallel structures, repetition of key terms, and transitional words to enhance cohesion.

Appendix: Ambiguity

Ambiguity can be a significant problem in scientific writing, especially when dealing with complex concepts or data. It is important to avoid using ambiguous terms or phrases that could lead to misinterpretation of the results or conclusions.

EASE (2013) recommends that writers strive to use clear and unambiguous language, ensuring that each term is defined or explained the first time it is used in the text. This helps prevent misunderstandings and confusion among readers, ensuring that the message is communicated accurately.

Appendix: Text-tables

Tables are a valuable tool in scientific writing, allowing researchers to present data in an organized and easy-to-understand format. They can help illustrate trends, comparisons, and relationships between variables. However, tables should be used judiciously and only when they are necessary for communicating the research findings

Kozak (2009) provides guidelines for creating effective tables, emphasizing the importance of clarity, conciseness, and coherence. He suggests using simple, well-organized table structures and ensuring that all information is clearly labeled and explained.

Appendix: References

References are an essential part of scientific writing, providing credibility to the research and allowing readers to follow up on the sources of information. It is important to cite all relevant sources accurately and consistently, following the appropriate citation style.

CSE (2014) offers comprehensive guidelines for writing references, including tips on formatting citations, avoiding plagiarism, and ensuring the accuracy of the information. By following these guidelines, researchers can maintain the integrity of their work and contribute to the advancement of knowledge in their field.
Practical tips for junior researchers

- Consider publishing a review article once you have completed the first year of your PhD studies because:
 (1) you should already have a clear picture of the field and an up-to-date stock of references in your computer;
 (2) research results sometimes take a long time to get (in agronomy: 3 years of field experiments...); (3) journals love review articles (they tend to improve the impact factor); (4) the rejection rate of review articles is low (although some journals publish solicited reviews only, so you might want to contact the Editor first); (5) the non-specialist reader - such as a future employer - will understand a review article more easily than an original article with detailed results.
- Alternatively, publish meta-analyses or other database-based research articles.
- Each part/item of an article should preferably be “almost” understandable (and citable) without reading other parts. The average time spent reading an article is falling, so virtually no one reads from Title to References. This phenomenon is amplified by the “digital explosion”, whereby search engines identify individual items, such as abstracts or figures, rather than intact articles.

Written by Eric Lichtfouse
eric.lichtfouse@dijon.inra.fr

For more advice, see EASE Toolkit for Authors
(www.ease.org.uk/publications/ease-toolkit-authors)
Appendix: Abstracts

Key elements of abstracts

Researchers are quite often in a “box” of technical details – the “important” things they focus on day in and day out. As a result, they frequently lose sight of 4 items essential for any readable, credible, and relevant IMRaD\(^1\) article: the point of the research, the research question, its answer, and the consequences of the study.

To help researchers to get out of the box, I ask them to include 5 key elements in their article and in their abstract. I describe briefly the elements below and illustrate them with a fictitious abstract.

Key element 1 (BACKGROUND): the point of the research – why should we care about the study? This is usually a statement of the BIG problem that the research helps to solve and the strategy for helping to solve it. It prepares the reader to understand the specific research question.

Key element 2 (OBJECTIVES): the specific research question – the basis of credible science. To be clear, complete and concise, research questions are stated in terms of relationships between the variables that were investigated. Such specific research questions tie the story together – they focus on credible science.

Key element 3 (METHODS): a precise description of the methods used to collect data and determine the relationships between the variables.

Key element 4 (RESULTS): the major findings – not only data, but the RELATIONSHIPS found that lead to the answer. Results should generally be reported in the past tense but the authors’ interpretation of the factual findings is in the present tense – it reports the authors’ belief of how the world IS. Of course, in a pilot study such as the following example, the authors cannot yet present definitive answers, which they indicate by using the words “suggest” and “may”.

Key element 5 (CONCLUSIONS): the consequences of the answers – the value of the work. This element relates directly back to the big problem: how the study helps to solve the problem, and it also points to the next step in research.

Here is a fictitious example.

Predicting malaria epidemics in Ethiopia

Abstract

BACKGROUND Most deaths from malaria could be prevented if malaria epidemics could be predicted in local areas, allowing medical facilities to be mobilized early.

OBJECTIVES As a first step toward constructing a predictive model, we determined correlations between meteorological factors and malaria epidemics in Ethiopia.

METHODS In a retrospective study, we collected meteorological and epidemic data for 10 local areas, covering the years 1963-2006. Poisson regression was used to compare the data. **RESULTS** Factors AAA, BBB, and CCC correlated significantly \((P<0.05)\) with subsequent epidemics in all 10 areas. A model based on these correlations would have a predictive power of about 30%. **CONCLUSIONS** Meteorological factors can be used to predict malaria epidemics. However, the predictive power of our model needs to be improved and validated in other areas.

This understandable and concise abstract forms the “skeleton” for the entire article. A final comment: This example is based on an actual research project and, at first, the author was in a “box” full of the mathematics, statistics, and computer algorithms of his predicting model. This was reflected in his first version of the abstract, where the word “malaria” never appeared.

Written by Ed Hull

[For more information, see Bless and Hull 2008](#)

\(^1\) IMRaD stands for Introduction, Methods, Results and Discussion.
Appendix: Ambiguity

Empty words and sentences

Many English words are empty – they do not add information but require the reader to fill in information or context to be understood. The reader is forced to supply his or her own interpretation, which could be different from what you, the writer, mean.

Empty words seem to give information and uncritical readers do not notice them – that is why they work so well for marketing texts. However, empty words do not belong in articles reporting scientific research. Empty words require the reader to supply the meaning – very dangerous. Concise and clear communication requires words that convey specific meaning.

Examples

It is important that patients take their medicine.
- Note that to a physician the meaning is probably entirely different than to the sales manager of a pharmaceutical company. “Important” is one of our best-loved, but empty, words – it fits every situation.

The patient was treated for XXX.
- “Treated” is empty; we do not know what was done. One reader could assume that the patient was given a certain medicine, while another reader could assume that the patient was given a different medicine. Perhaps the patient was treated, or sent to Switzerland for a rest cure.

The patient reacted well to the medicine.
- “Reacted well” gives us a positive piece of information, but otherwise it is empty; we do not know how the patient reacted.

The patient’s blood pressure was low.
- We interpret “high/low blood pressure” to mean “higher/lower than normal”, but we, the readers, have to supply that reference standard. A more concise statement is: The patient’s blood pressure was 90/60.

Empty words and phrases not only require the reader to supply the meaning, they also contribute to a wordy blah-blah text. In scientific articles they destroy credibility. Here are some examples.

It has been found that the secondary effects of this drug include...
- Better: The secondary effects of this drug include… (ref.).
 Or, if these are your new results: Our results show that the secondary effects of this drug include...

We performed a retrospective evaluation study on XXX.
- “Performed a study” is a much overused and rather empty phrase. Better: We retrospectively evaluated XXX.

More examples that require the reader to supply information if it is not evident from the context:
- quality
- good/bad
- high/low
- large/small
- long/short
- proper/properly (e.g. “…a proper question on the questionnaire…”)
- As soon as possible...

Written by Ed Hull
edhull@home.nl

©2014 European Association of Science Editors (www.ease.org.uk). Non-commercial printing allowed.
Appendix: Cohesion

Cohesion – the glue

The word “cohesion” means “unity”, “consistency”, and “solidity”. Building cohesion into your text makes life easier for your readers – they will be much more likely to read the text. Cohesion “glues” your text together, focusing the readers’ attention on your main message and thereby adding credibility to your work.

Think of your text as a motorcycle chain made up of separate links, where each sentence is one link. A pile of unconnected links is worthless – it will never drive your motorcycle. Similarly, a pile of unconnected sentences is worthless – it will never drive your message home.

To build a cohesive text, you have to connect your sentences together to make longer segments we call paragraphs. A cohesive paragraph clearly focuses on its topic. You then need to connect each paragraph with the previous paragraph, thereby linking the paragraph topics. Linking paragraphs results in building cohesive sections of your article, where each section focuses on its main topic. Then, link the sections to each other and, finally, connect the end of your article to the beginning, closing the loop – now the chain will drive our motorcycle. Let’s look at linking techniques.

Basic guidelines for building a cohesive story:
1. Link each sentence to the previous sentence.
2. Link each paragraph to the previous paragraph.
3. Link each section to the previous section.
4. Link the end to the beginning.

Linking techniques
Whether you want to link sentences, paragraphs, sections or the beginning to the end, use 2 basic linking techniques:

- Use linking words and phrases, such as: however, although, those, since then... An example: Our research results conflict with those of Smith and Jones. To resolve those differences we measured ...
- Repeat key words and phrases – do not use synonyms. In scientific writing, repetition sharpens the focus. Repetition especially helps the reader to connect ideas that are physically separated in your text. For example: Other investigators have shown that microbial activity can cause immobilization of labile soil phosphorus. Our results suggest that, indeed, microbial activity immobilizes the labile soil phosphorus.

The example below illustrates how to link your answer to your research question, thus linking the Discussion with the Introduction.

In the Introduction, the research hypothesis is stated. For example: The decremental theory of aging led us to hypothesize that older workers in “speed” jobs perform less well and have more absences and more accidents than other workers have.

In the Discussion, the answer is linked to the hypothesis: Our findings do not support the hypothesis that older workers in speed jobs perform less well and have more absences and more accidents than other workers have. The older workers generally earned more, were absent less often, and had fewer accidents than younger workers had. Furthermore, we found no significant difference between...

Written by Ed Hull
edhull@home.nl
Appendix: Ethics

Publication ethics checklist for authors

EXPLANATION: obligatory declarations applying to all manuscripts are printed in bold.

Original or acceptable secondary publication
☐ No part of this manuscript (MS) has been published, except for passages that are properly cited.
☐ An abstract/summary of this MS has been published in…………………………………..…………………………………………………………
☐ This MS has already been published in …………..…………………………………………………………but in…………………………………..language. A full citation to the primary publication is included, and the copyright owner has agreed to its publication in English.
☐ No part of this MS is currently being considered for publication elsewhere.
☐ In this MS, original data are clearly distinguished from published data. All information extracted from other publications is provided with citations.

Authorship
☐ All people listed as authors of this MS meet the authorship criteria, i.e. they contributed substantially to study planning, data collection or interpretation of results and wrote or critically revised the MS and approved its final submitted version and agree to be accountable for all aspects of the work (ICMJE 2013).
☐ All people listed as authors of this MS are aware of it and have agreed to be listed.
☐ No person who meets the authorship criteria has been omitted.

Ethical experimentation and interpretation
☐ The study reported in this MS involved human participants and it meets the ethical principles of the Declaration of Helsinki (WMA 2013). Data have been disaggregated by sex (and, whenever possible, by race).
☐ The study reported in this MS meets the Consensus Author Guidelines on Animal Ethics and Welfare for Veterinary Journals about humane treatment of animals and has been approved by an ethical review committee.
☐ The study reported in this MS meets other ethical principles, namely ……………………………………..
☐ I and all the other authors of this MS did our best to avoid errors in experimental design, data presentation, interpretation, etc. However, if we discover any serious error in the MS (before or after publication), we will alert the editor promptly.
☐ None of our data presented in this MS has been fabricated or distorted, and no valid data have been excluded. Images shown in figures have not been manipulated to make a false impression on readers.
☐ Results of this study have been interpreted objectively. Any findings that run contrary to our point of view are discussed in the MS.
☐ The article does not, to the best of our knowledge, contain anything that is libellous, illegal, infringes anyone's copyright or other rights, or poses a threat to public safety.

Acknowledgements
☐ All sources of funding for the study reported in this MS are stated.
☐ All people who are not listed as authors but contributed considerably to the study reported in this MS or assisted in its writing (e.g. author’s editors, translators, medical writers) are mentioned in the Acknowledgements.
☐ All people named in the Acknowledgements have agreed to this. However, they are not responsible for the final version of this MS.
☐ Consent has been obtained from the author(s) of unpublished data cited in the MS.
☐ Copyright owners of previously published figures or tables have agreed to their inclusion in this MS.

Conflict of interest
☐ All authors of this study have signed a conflict of interest statement and disclosed any financial or personal links with people or organizations that have a financial interest in this MS.

Date:…………………………………………………………
Signature:…………………………………………………………
MS title:…………………………………………………………

Compiled by Sylwia Ufnalska
sylwia.ufnalska@gmail.com

2 See www.veteditors.org/ethicsconsensuqsguidelines.html
3 See www.icmje.org/doi_disclosure.pdf
Appendix: Plurals

Examples of irregular plurals deriving from Latin or Greek

<table>
<thead>
<tr>
<th>Singular</th>
<th>Plural</th>
<th>Examples</th>
</tr>
</thead>
</table>
| -a | -ae | alga – algae, larva – larvae
| | rarely -ata | stoma – stomata |
| -ex | -ices | index – indices (or indexes*)
| | | apex – apices (or apexes*) |
| -ies | -ies | species, series, facies |
| -is | -es | axis – axes, hypothesis – hypotheses |
| -ix | -ices | appendix – appendices (or appendixes*)
| | | matrix – matrices (or matrixes*) |
| -on | -a | phenomenon – phenomena
| | | criterion – criteria |
| -um | -a | datum – data**, bacterium – bacteria |
| -us | -i | locus – loci, fungus – fungi (or funguses*) |
| | rarely -uses | sinus – sinuses
| | or -era | genus – genera |

* Acceptable anglicized plurals that are also listed in dictionaries.
** In non-scientific use, usually treated as a mass noun (like information, etc.)

It must be remembered that some nouns used in everyday English also have irregular plural forms (e.g. woman – women, foot – feet, tooth – teeth, mouse – mice, leaf – leaves, life – lives, tomato – tomatoes) or have no plural form (e.g. equipment, information, news). For more examples, see CSE (2014). If in doubt, consult a dictionary.

Compiled by Sylwia Ufnalska
sylwia.ufnalska@gmail.com
Appendix: Simplicity

Examples of expressions that can be simplified or deleted (Ø)

<table>
<thead>
<tr>
<th>Long or (sometimes) wrong</th>
<th>Better choice (often)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounted for by the fact that</td>
<td>because</td>
</tr>
<tr>
<td>as can be seen from Figure 1, substance Z reduces twitching</td>
<td>substance Z reduces twitching (Fig. 1)</td>
</tr>
<tr>
<td>at the present moment</td>
<td>now</td>
</tr>
<tr>
<td>bright yellow in colour</td>
<td>bright yellow</td>
</tr>
<tr>
<td>conducted inoculation experiments on</td>
<td>inoculated</td>
</tr>
<tr>
<td>considerable amount of</td>
<td>much</td>
</tr>
<tr>
<td>despite the fact that</td>
<td>although</td>
</tr>
<tr>
<td>due to the fact that</td>
<td>because</td>
</tr>
<tr>
<td>for the reason that</td>
<td>because</td>
</tr>
<tr>
<td>if conditions are such that</td>
<td>if</td>
</tr>
<tr>
<td>in a considerable number of cases</td>
<td>often</td>
</tr>
<tr>
<td>in view of the fact that</td>
<td>because</td>
</tr>
<tr>
<td>it is of interest to note that</td>
<td>Ø</td>
</tr>
<tr>
<td>it may, however, be noted that</td>
<td>but</td>
</tr>
<tr>
<td>large numbers of</td>
<td>many</td>
</tr>
<tr>
<td>lazy in character</td>
<td>lazy</td>
</tr>
<tr>
<td>methodology</td>
<td>methods</td>
</tr>
<tr>
<td>owing to the fact that</td>
<td>because</td>
</tr>
<tr>
<td>oval in shape</td>
<td>oval</td>
</tr>
<tr>
<td>prior to</td>
<td>before</td>
</tr>
<tr>
<td>taken into consideration</td>
<td>considered</td>
</tr>
<tr>
<td>terminate</td>
<td>end</td>
</tr>
<tr>
<td>the test in question</td>
<td>this test</td>
</tr>
<tr>
<td>there can be little doubt that this is</td>
<td>this is probably</td>
</tr>
<tr>
<td>to an extent equal to that of X</td>
<td>as much as X</td>
</tr>
<tr>
<td>utilize</td>
<td>use</td>
</tr>
<tr>
<td>whether or not</td>
<td>whether</td>
</tr>
</tbody>
</table>

Based on O’Connor (1991)
Appendix: Spelling

Examples of differences between British and American spelling

<table>
<thead>
<tr>
<th>British English</th>
<th>American English</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ae-</td>
<td>-e-</td>
</tr>
<tr>
<td>e.g. aetiology, faeces, haematology</td>
<td>e.g. etiology, feces, hematology</td>
</tr>
<tr>
<td>-ce in nouns, -se in verbs</td>
<td>-se in nouns and verbs</td>
</tr>
<tr>
<td>e.g. defence, licence/license, practice/practise</td>
<td>e.g. defense, license</td>
</tr>
<tr>
<td>(but practice as both noun and verb)</td>
<td></td>
</tr>
<tr>
<td>-ise or -ize*</td>
<td>-ize</td>
</tr>
<tr>
<td>e.g. organise/organize</td>
<td>e.g. organize</td>
</tr>
<tr>
<td>-isation or -ization*</td>
<td>-ization</td>
</tr>
<tr>
<td>e.g. organisation/organization</td>
<td>e.g. organization</td>
</tr>
<tr>
<td>-led, -ling, -lor, etc.</td>
<td>-led, -ling, -lor, etc.</td>
</tr>
<tr>
<td>e.g. labelled, travelling, councillor</td>
<td>e.g. labeled, traveling, councilor</td>
</tr>
<tr>
<td>(but fulfil, skillful)</td>
<td>(but fulfill, skillful)</td>
</tr>
<tr>
<td>-oe-</td>
<td>-e-</td>
</tr>
<tr>
<td>e.g. diarrhoea, foetus, oestrogen</td>
<td>e.g. diarrhea, fetus, estrogen</td>
</tr>
<tr>
<td>-ogue</td>
<td>-og or -ogue</td>
</tr>
<tr>
<td>e.g. analogue, catalogue</td>
<td>e.g. analog/anologue, catalog/catalogue</td>
</tr>
<tr>
<td>-our</td>
<td>-or</td>
</tr>
<tr>
<td>e.g. colour, behaviour, favour</td>
<td>e.g. color, behavior, favor</td>
</tr>
<tr>
<td>-re</td>
<td>-er</td>
</tr>
<tr>
<td>e.g. centre, fibre, metre, litre</td>
<td>e.g. center, fiber, meter, liter</td>
</tr>
<tr>
<td>(but meter for a measuring instrument)</td>
<td></td>
</tr>
<tr>
<td>-yse</td>
<td>-yze</td>
</tr>
<tr>
<td>e.g. analyse, dialyse</td>
<td>e.g. analyze, dialyze</td>
</tr>
<tr>
<td>aluminium</td>
<td>aluminium or aluminium**</td>
</tr>
<tr>
<td>grey</td>
<td>gray</td>
</tr>
<tr>
<td>mould</td>
<td>mold</td>
</tr>
<tr>
<td>programme (general) or program (computer)</td>
<td>program</td>
</tr>
<tr>
<td>sulphur or sulfur**</td>
<td>sulfur</td>
</tr>
</tbody>
</table>

*One ending should be used consistently.

**Recommended by the International Union of Pure and Applied Chemistry and the Royal Society of Chemistry.

For more examples, see CSE (2014). If in doubt, consult a dictionary. Obviously, American and British English slightly differ not only in spelling but also in word use, grammar, punctuation, etc. However, those differences are outside the scope of this document.

Compiled by Sylwia Ufnalska
sylwia.ufnalska@gmail.com

©2014 European Association of Science Editors (www.ease.org.uk). Non-commercial printing allowed.
Appendix: Text-tables

Text-tables – effective tools for presentation of small data sets

Arranging statistical information in a classic table and referring to it elsewhere means that readers do not access the information as immediately as they would when reading about it within the sentence. They have to find the table in the document (which may be on another page), losing some time. This slightly decreases the strength of the information. Quicker access to the information can be achieved within a sentence, but this is not an effective structure if more than 2 numbers are to be compared. In such situations, a “text-table” appears to be ideal for communicating information to the reader quickly and comprehensibly (Tufte 2001). The text-table is a simple table with no graphic elements, such as grid lines, rules, shading, or boxes. The text-table is embedded within a sentence, so no reference to it is needed. Keeping the power of tabular arrangements, text-tables immediately convey the message. Look at the following examples.

Original sentence:
Iron concentration means (±standard deviation) were as follows: 11.2±0.3 mg/dm3 in sample A, 12.3±0.2 mg/dm3 in sample B, and 11.4±0.9 mg/dm3 in sample C.

Modified:
Iron concentration means (±standard deviation, in mg/dm3) were as follows:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>12.3±0.2</td>
</tr>
<tr>
<td>C</td>
<td>11.4±0.9</td>
</tr>
<tr>
<td>A</td>
<td>11.2±0.3</td>
</tr>
</tbody>
</table>

Original sentence (do Carmo et al. 2011):
“Prior to rotavirus vaccine introduction, there was a trend of declining diarrhea-related mortality among children in all age groups (RR stands for relative reduction per year):

<table>
<thead>
<tr>
<th>Age Group</th>
<th>RR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 y</td>
<td>0.87 (0.83–0.94)</td>
<td><0.001</td>
</tr>
<tr>
<td>1 to < 2 y</td>
<td>0.96 (0.91–1.02)</td>
<td>0.23</td>
</tr>
<tr>
<td>2 to 4 y</td>
<td>0.93 (0.87–1.00)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Some rules for arranging text-tables
1. The larger a text-table is, the less power it has.
2. The sentence that precedes the text-table acts as a heading that introduces the information the text-table represents, and usually ends with a colon. Text-tables should have neither headings nor footnotes.
3. Indentation of text-tables should fit the document’s layout.
4. Occasional changes in font (such as italics, bold, a different typeface) may be used, but with caution. They can, however, put some emphasis on the tabular part.
5. Do not use too many text-tables in one document or on one page.
6. In addition to the above rules, apply rules for formatting regular tables. For example, numbers should be given in 2-3 effective digits; ordering rows by size and their correct alignment will facilitate reading and comparison of values; space between columns should be neither too wide nor too narrow.

*Written by Marcin Kozak
nyggus@gmail.com*

(for more information, see Kozak 2009)
About EASE

Background information about EASE and the EASE Guidelines

The European Association of Science Editors (EASE) was formed in May 1982 at Pau, France, from the European Life Science Editors’ Association (ELSE) and the European Association of Earth Science Editors (Editerra). Thus in 2012 we celebrated the 30th anniversary of our Association.

EASE is affiliated to the International Union of Biological Sciences (IUBS), the International Union of Geological Sciences (IUGS), the International Organization for Standardization (ISO). Through its affiliation to IUBS and IUGS, our Association is also affiliated to the International Council for Science (ICSU) and is thereby in formal associate relations with UNESCO.

EASE cooperates with the International Society for Addiction Journal Editors (ISAJE), the International Association of Veterinary Editors (IAVE), the International Society of Managing and Technical Editors (ISMTE), the Council of Science Editors (CSE), and the Association of Earth Science Editors (AESE) in North America. Our other links include the African Association of Science Editors (AASE), the Association of Learned and Professional Society Publishers (ALPSP), the European Medical Writers Association (EMWA), the Finnish Association of Science Editors and Journalists (FASE), the Mediterranean Editors and Proofreaders (SENSE), and the Society for Editors and Journalists (FASEJ), the Society of English-Native-Speaking Editors and Journalists (FASEJ), the Mediterranean Editors and Proofreaders (SENSE), and the Society for Editors and Journalists (FASEJ).

We have major conferences every 2-3 years in various countries. EASE also organizes occasional seminars, courses, and other events between the conferences.

Since 1986, we publish a journal, now entitled European Science Editing. It is distributed to all members 4 times a year. It covers all aspects of editing and includes original articles and meeting reports, announces new developments and forthcoming events, reviews books, software and online resources, and highlights publications of interest to members. To facilitate the exchange of ideas between members, we also use an electronic EASE Forum, the EASE Journal Blog, and our website (www.ease.org.uk).

In 2007, we issued the EASE statement on inappropriate use of impact factors. Its major objective was to recommend that “journal impact factors are used only – and cautiously – for measuring and comparing the influence of entire journals, but not for the assessment of single papers, and certainly not for the assessment of researchers or research programmes either directly or as a surrogate”.

In 2010, we published EASE Guidelines for Authors and Translators of Scientific Articles. Our goal was to make international scientific communication more efficient and help prevent scientific misconduct. This document is a set of generalized editorial recommendations concerning scientific articles to be published in English. We believe that if authors and translators follow these recommendations before submission, their manuscripts will be more likely to be accepted for publication. Moreover, the editorial process will probably be faster, so authors, translators, reviewers and editors will then save time.

EASE Guidelines are a result of long discussions on the EASE Forum and during our 2009 conference in Pisa, followed by consultations within the Council. The document is updated annually and is already available in 21 languages: Arabic, Bangla, Bosnian, Bulgarian, Chinese, Croatian, Czech, English, Estonian, French, German, Hungarian, Italian, Japanese, Korean, Persian, Polish, Portuguese (Brazilian), Romanian, Russian, Spanish, and Turkish. The English original and its translations can be freely downloaded as PDFs from our website. We invite volunteers to translate the document into other languages.

Many institutions promote EASE Guidelines (e.g. see the European Commission Research & Innovation website), and many articles about this document have been published. Scientific journals also help in its popularization, by adding at the beginning of their instructions for authors a formula like:

Before submission, follow EASE Guidelines for Authors and Translators, freely available at www.ease.org.uk/publications/author-guidelines in many languages. Adherence should increase the chances of acceptance of submitted manuscripts.

In 2012 we launched the EASE Toolkit for Authors, freely available on our website. The Toolkit supplements EASE Guidelines and includes more detailed recommendations and resources on scientific writing and publishing for less experienced researchers. Besides, EASE participated in the sTANDEM project (www.standem.eu), concerning standardized tests of professional English for healthcare professionals worldwide. Our Association also supports the campaigns Healthcare Information For All by 2015 (www.hifa2015.org) and AllTrials (www.alltrials.net).

For more information about our Association, member’s benefits, and major conferences, see the next page and our website.
Skills-Communication-Fellowship
EASE is an internationally oriented community of individuals from diverse backgrounds, linguistic traditions, and professional experience, who share an interest in science communication and editing. Our Association offers the opportunity to stay abreast of trends in the rapidly changing environment of scientific publishing, whether traditional or electronic. As an EASE member, you can sharpen your editing, writing and thinking skills; broaden your outlook through encounters with people of different backgrounds and experience, or deepen your understanding of significant issues and specific working tools. Finally, in EASE we have fun and enjoy learning from each other while upholding the highest standards.

EASE membership offers the following benefits
- A quarterly journal, European Science Editing, featuring articles related to science and editing, book and web reviews, regional and country news, and resources
- An electronic forum and EASE journal blog for exchanging ideas
- A major conference every 2-3 years
- Seminars and workshops on hot topics
- Science Editors’ Handbook, covering everything from on-screen editing to office management, peer review, and dealing with the media
- Advertising of your courses or services free of charge on the EASE website
- Discounts on job advertisements on the EASE website
- Opportunities to share problems and solutions with kindred spirits
- Good networking and contacts for freelancers
- Chances to meet international colleagues from a range of disciplines
- Leads for jobs, training, and employment options
- Discounts on editorial software, courses, etc.

Our Members
EASE welcomes members from every corner of the world. They can be found in 50 countries: from Australia to Venezuela by way of China, Russia and many more. EASE membership cuts across many disciplines and professions. Members work as commissioning editors, academics, translators, publishers, web and multi-media staff, indexers, graphic designers, statistical editors, science and technical writers, author’s editors, journalists, proofreaders, and production personnel.

Major Conferences
2014 Split, Croatia
2012 Tallinn, Estonia (30th Anniversary)
2009 Pisa, Italy
2006 Kraków, Poland
2003 Bath, UK
2003 Halifax, Nova Scotia, Canada (joint meeting with AESE)
2000 Tours, France
1998 Washington, DC, USA (joint meeting with CBE and AESE)
1997 Helsinki, Finland
1994 Budapest, Hungary
1991 Oxford, UK
1989 Ottawa, Canada (joint meeting with CBE and AESE)
1988 Basel, Switzerland
1985 Holmenkollen, Norway
1984 Cambridge, UK
1982 Pau, France